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Responding to stimuli in a timely manner and anticipating the timing of future events both re-
quire us to internally track the passage of time. Models of timing on these tasks suggest that the
subjective passage of time can be described as a noisy accumulation process driven by neural
oscillations. In this paper, we show that the accuracy of these accumulators can be manipulated
by occluding visual cues to the passage of time. Using a simple perceptual paradigm, we ma-
nipulate the total length of time that a stimulus must be tracked, the rate at which it moves, and
the uncertainty that participants have about its position (length of occlusion). Participants con-
sistently under-estimated the movement of the stimulus when it was occluded, corresponding
to a drift rate in an accumulator model that was approximately half of what would be required
to accurately track the passage of time. This results in consistently tardy anticipatory response
times under uncertainty (Study 1) and an under-estimation of stimulus movement as it passes
behind an occlusion (Study 2). Using a novel timing problems scale, we show that individual
differences in model parameters representing subjective tracking of time under uncertainty
predicted real-world difficulties managing time, tardiness, and procrastination.

Keywords: anticipatory timing | evidence accumulation | response time | tardiness |
procrastination

Introduction

Response times have long been used to understand the
dynamic cognitive processes underlying perceptual decision-
making and performance (Luce, 1986; MacLeod, 1992; Erik-
sen & Eriksen, 1974). Looking at the entire distribution of
response times elicited in response to a particular stimulus
allows a researcher to make rich inferences about cognition
that are not possible with simple measures of accuracy or
central tendency (Balota & Yap, 2011; Lerche & Voss, 2020;
Haines et al., 2020). Paired with models that account for
distributions of response times (Ratcliff et al., 2016; Buse-
meyer et al., 2019), they can even reverse the conclusions
that we draw about psychological processes relative to mean
response times, by better characterizing the underlying psy-
chological processes that generated the data (Heathcote et
al., 1991; Algom et al., 2015). However, response times
have historically focused on reactive responses or decisions,
where a participant enters a response at the time of their
choosing in response to a presented stimulus. Sometimes
these reactive responses are constrained by a response dead-
line or other types of time pressure (Wickelgren, 1977; Reed,
1973; Edland & Svenson, 1993; Heitz, 2014), but for partic-
ipants, the time at which responses are entered is typically
secondary to selection of a response itself. That is, the goal

is to decide which option to select while minimizing response
time (Wald & Wolfowitz, 1949; Hawkins et al., 2012; Bogacz
et al., 2006, 2010).

Although common, reactive decision-making is not the
only type of task where timing is important. For example,
imagine you are trying to trap or swat a fly that has come
inside. Successfully doing so requires being able to predict
precisely where the fly will be and when, integrating your
knowledge of its trajectory to predict the best time to take
action. The task is naturally made more difficult when the
trajectory of the fly or its future location is more uncertain,
either because you cannot follow its flight (e.g., it moves too
fast) or because it becomes occluded (e.g., flies behind an
item of furniture). In this scenario, you are not spontaneously
reacting to some event, but rather you are engaging in antic-
ipatory timing with the goal to calibrate your actions for an
event you know is coming (Balcı & Simen, 2016). This type
of task can be juxtaposed against traditional response time
tasks. As opposed to merely assessing latency, we can also
measure accuracy and precision: how close were you to the
correct timing of your action to catch the fly?

Anticipatory decision making paradigms are most com-
mon in the context of rhythmic motor production, where par-
ticipants must tap along with or reproduce a beat of a specific
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frequency (Wing & Kristofferson, 1973b,a; Michon, 1967;
Ivry, 1996). These often mimic the types of decisions and
actions performed by musicians, who make hundreds or even
thousands of precisely-timed actions over the course of a sin-
gle piece of music. In motor production and timing tasks, a
participant must make a decision about when to respond and
prepare for execution of a single action, rather than selecting
among multiple different responses to make. Performance on
these tasks is gauged in terms of the difference between the
correct response time (e.g., when the beat actually occurs)
and the time at which a participant responds.

Timing deficits on these motor production and timing
tasks are related to a myriad of mental health and neurologi-
cal disorders including bipolar disorder (Carroll et al., 2009),
schizophrenia (O’Donnell et al., 2004), Tourette’s (Martino
et al., 2019), ADHD (Zelaznik et al., 2012), dyslexia (Wolff,
2002; Casini et al., 2018), depression (Lemke et al., 1999;
Williamson et al., 2014), substance use (Wittmann et al.,
2007), and of course Parkinson’s and related neurocogni-
tive disorders (C. R. G. Jones et al., 2011; C. R. Jones &
Jahanshahi, 2014; Bareš et al., 2010). Modeling the cog-
nitive mechanisms underlying anticipatory timing can help
diagnose and understand motor deficits, providing insight
into clinical disorders that are difficult or impossible to in-
fer from behavior alone (Hitchcock et al., 2021). Interest-
ingly, performance on low-level motor production and tim-
ing tasks appears to be related to both time perception (Ivry,
1996) and to relatively “distant” tasks such as high-level
planning (Ziessler & Nattkemper, 2011), time management,
and expert performance on spatio-temporal tasks (Keele &
Hawkins, 1982). Training on time perception tasks even
appears to generate lasting improvements in motor produc-
tion (Meegan et al., 2000) and conversely, motor training can
yield improvements in time perception and temporal expec-
tations (Fautrelle et al., 2015).

The wide-ranging correlates of simple timing abilities
suggest that the basic cognitive mechanisms underlying tim-
ing ability subserve complex behavior across multiple do-
mains. However, it is not always clear which components
of timing ability are responsible for performance on differ-
ent tasks. In this paper, we examine response times on an
anticipatory response task and use a timing model (Anders
et al., 2016; Balcı & Simen, 2016) to disentangle cognitive
processes related to tracking the passage of time, represent-
ing uncertainty in the timing of future events, and triggering
actions at a particular time. We then examine how these func-
tions (or dysfunctions) propagate to high-level time manage-
ment, connecting model parameters to procrastination self-
report scales and a new scale measuring generalized prob-
lems with lateness, planning, and time management.

One might expect that anticipatory response times lever-
age cognitive mechanisms different from those used to pro-
duce decisions in reactive response time paradigms, due to

the distinct nature of the tasks between the two concepts.
However, recent work by Hawkins & Heathcote (2021) has
suggested that common reactive decision tasks may be con-
trolled in part by a timer mechanism, where a participant’s in-
ternal sense of time (leveraged in anticipatory tasks) is used
to impose deadlines on the evidence accumulation process
typically thought to control decision-making (Ratcliff et al.,
2016; Busemeyer et al., 2019). In this view, a “timer” pro-
cess runs in parallel to evidence accumulation and halts the
decision process when it hits a threshold (target duration),
forcing an early response based on whatever information the
decision-maker has available at that time. Introducing such a
mechanism can be quite useful, as keeping track of time dur-
ing choice suggests that difficult decisions can be terminated
early, and that a decision-maker can move onto easier – but
equally important– choices.

In this sense, Hawkins & Heathcote’s (2021) timed racing
diffusion model (TRDM) shares goals with models of col-
lapsing choice boundaries (Bowman et al., 2012; Drugow-
itsch et al., 2012; Hawkins et al., 2015) as well as urgency
signal / urgency-gating models (Churchland et al., 2008),
each of which imposes a choice deadline by supplementing
the evidence accumulation process with a timer mechanism,
tracking the elapsed time since the beginning of the deci-
sion process. Naturally, this is an intersection where deci-
sion models should be informed by models of timing: how
exactly do people keep track of time, and do these mecha-
nisms resemble the ones that have been proposed to terminate
evidence accumulation? Recent work on collapsing bound-
ary models have suggested that timing ability is related to
a general tendency towards response caution, but not to the
rate of collapse of thresholds (Miletić & van Maanen, 2019).
Different plausible causes could account for this result, for
instance separate cognitive mechanisms might control timing
and decision-making.

Alternatively, it could be that collapsing boundaries do
not reflect the true mechanisms underlying early termina-
tion of decision processes under time pressure. Connec-
tions between decision-making and timing are much stronger
when both are viewed through the lens of diffusion processes
(Simen et al., 2016; Ratcliff, 1978a), where our ability to
accumulate information or track time is driven by integrat-
ing spikes produced by neural oscillators over time (Simen
et al., 2011; Smith, 2010). Balcı & Simen (2016) devel-
oped a model of timing based on the same approach used
by Hawkins & Heathcote (2021): the duration of time that
has passed since being exposed to a stimulus is tracked by a
noisy accumulator; specifically, its level of activation corre-
sponds to the number of “ticks” of a neural oscillator, thereby
reflecting the approximate duration of time that has elapsed.
This approach to modeling timing processes makes a number
of predictions for how people must represent the passage of
time as they perform a variety of perceptual tasks. In the
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next section, we review the structure of this model and the
empirical predictions we can derive from it.

Timing model

In both the TRDM (Hawkins & Heathcote, 2021) and
the time-adaptive, opponent Poisson drift diffusion model
(TopDDM; Balcı & Simen, 2016; Simen et al., 2011), the
passage of time is tracked by the degree of activation of a
noisy accumulator. A diagram of this approach is shown
in Figure 1. As time passes, oscillatory neurons generate
spikes of activity that are integrated into a timing accumula-
tor x. This produces a continuous-time random walk / diffu-
sion process (Ratcliff & McKoon, 2008; Ratcliff et al., 2016),
where the state of the accumulator over time changes accord-
ing to a Wiener process Wt with constant drift µ:

dx = µ ·dt +σ ·dBt (1)

The state of the accumulator at a particular time t is in-
dexed by x(t). If the process starts at position x(0) = 0, then
its state at time t > 0 is normally distributed, with mean µt
and variance σ2t. The variance is multiplied by a Brow-
nian motion component, which results in a stochastic pro-
cess with linearly increasing variability over time. There-
fore, we expect that the drift rate µ in a diffusion framework
describes the linear correspondence between the objective
passage of time (t) and the subjective representation of its
passage (x(t)). Values of µ less than one (when the process
is scaled correctly) correspond to cases where the decision
maker perceives the passage of time to be slower than it is
in actuality, whereas values greater than one correspond to
cases where time subjectively appears to move more quickly.
Therefore, we might expect the value of µ to be altered in
cases of novel environments or stimuli (Pariyadath & Eagle-
man, 2007; Ulrich et al., 2006), shifts in attention (Tse et al.,
2004) or mood (Hoffer & Osmond, 1962), stimulus contrast
(Kim & McAuley, 2013), or even aging (Wittmann & Lehn-
hoff, 2005). In this paper, we evaluate the model’s ability to
accommodate changes in subjective time by testing how µ –
as well as each of the other model parameters – responds to
stimulus manipulations of speed, uncertainty, and exposure.

Just as the drift rate corresponds to the average subjective
passage of time, the value of the diffusion rate σ2 reflects
the relative uncertainty in the accumulator’s state, describing
how precisely a decision-maker tracks the passage of time.
Greater values of σ correspond to greater accumulation of
momentary uncertainty, reflecting the integration of an in-
creasing number of noisy neural signals generated by neural
oscillators (Wing & Kristofferson, 1973b; Balcı & Simen,
2016). Smaller values indicate a more precise subjective rep-
resentation of time, although this representation can still be
inaccurate if µ is not close to one (i.e., a biased representation
of time, with low variance).

This subjective representation of time is mapped onto an
anticipatory response by comparing the value of x(t) to a
threshold, θ, as shown in Figure 1. Typically, there is a sin-
gle threshold assigned to each response in reactive choice
tasks (Vickers, 1970; Ratcliff et al., 2016) (though see Smith,
2016; Reynolds et al., 2021, 2020, for some exceptions), and
a response is generated when x(t) crosses one of the thresh-
olds for the first time. In the case of timing, often there is
only one response required and thus only one threshold.

In reactive choice models, the total response time is the
sum of the time to hit this threshold, plus the time required
to execute the response or non-decision time, τ, forming a
(shifted) Wald distribution (Anders et al., 2016). This non-
decision time is sometimes abbreviated as TER, or the time
for Encoding and Retrieval processes unrelated to the time
taken to make the decision itself. However, the meaning of
the shift produced by the non-decision time changes in an-
ticipatory response times. In these tasks, a participant should
already have encoded the stimulus and prepared their mo-
tor response by the time they expect to trigger a response.
The “true” non-decision time should be approximately τ = 0.
Therefore, a fixed delay relative to the true time at which par-
ticipants should respond in anticipatory timing tasks (τ > 0)
instead reflects a failure on the participant’s part to account
for how long these processes take, creating a late response.
Conversely, some participants may “jump the gun” and re-
spond too early (τ < 0), which is not possible with the
conceptualization of non-decision time in classical reactive
choice paradigms. When we examine the estimates of non-
decision time later in the paper, we refer to τ in terms of
biases toward early (τ < 0) or late (τ > 0) responses.

If a decision maker aims to respond at a target time t, then
they will produce the best results when θ

µ = t and when τ= 0.
Due to the presence of noise in the representation of stimulus
timing (σ) there is unavoidable variability in response times
around this point. But this point at least gives us a normative
basis for performance on the task: participants with accurate
perceptions of time on the task and good estimates of their
own motor execution time should have parameters approxi-
mating these relationships.

Model predictions

The goal of this paper is to evaluate how the components
of the aforementioned model of timing respond to manipula-
tions of a moving stimulus, as well as the degree to which the
model can account for patterns of response times (Study 1)
and responses (Study 2) when attempting to track the passage
of time. If participants’ perceptions of time are controlled by
a noisy accumulator, then we should observe corresponding
patterns of behavior in anticipatory timing. We test these
predictions using a moving-ball stimulus described in detail
in the Methods. Subjects viewed the motion of the ball while
it crossed their screen, before the same objected disappeared
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Figure 1
Diagram of the structure of the Wald model. In the first study, we examine distributions of observed response times (top),
which are expected to follow a Wald distribution, and how they relate to manipulations of model parameters related to antici-
patory timing. In the second study (right), we examine distributions of estimated stimulus locations, tapping into the evidence
representations at particular points in time, which are expected to follow a normal distribution.

behind an occluded obstacle. At this point, it becomes vital
to mentally represent the location of the now imperceptible
ball as it continues on its trajectory, in order to predict the
eventual arrival of the object at a specific position.

In this task, participants must assess the velocity of the
ball to predict the timing of its movement through the oc-
cluded zone (Figure 2). In the first study, the objective was to
predict when the ball will arrive at the far edge of the occlu-
sion. The model predicts that the response times will follow a
Wald distribution (Balcı & Simen, 2016; Anders et al., 2016;
Hawkins & Heathcote, 2021). Furthermore, their uncertainty
about its location should grow with the length of time the ball
is occluded (Figure 1), as the variance of the accumulator
representation grows linearly with time. We can also expect
that the rate of accumulation µ will describe the ball’s speed
relative to the threshold θ; therefore yielding higher values
of µ for faster ball movements, when θ is fixed. Finally, the
noise in accumulation (or variability in the rate; interchange-
able in this paradigm) σ could be affected by manipulations
of the duration of exposure to the ball prior to occlusion; a
greater exposure should yield a more accurate representation
of the ball’s speed, and thus more precise predictions for its
arrival time.

In the second study, we test several additional predictions
of the model by challenging participants to identify the loca-
tion of the ball at a particular time. If the model predictions
are borne out, an individual’s prediction of its location at any
given time should follow a normal distribution (truncated, as
they know the ball could never be found outside the occlu-
sion). Uncertainty about its eventual position should grow

linearly with time, meaning that the variance of their loca-
tion responses should correspond linearly with the length of
time the ball remained occluded, before the prompt for its
location (see right side of Figure 1). Manipulations of ball
speed, length of occlusion, and exposure duration before the
ball enters the occlusion should have the same effects on the
parameters of the model in both Study 1 and Study 2 tasks.

Finally, we test two normative predictions of the model.
First, an accurate timer should always track the location
of the ball when its velocity has been properly perceived.
Therefore, the mean value of θ

µ for each participant should
approach the exact amount of time it takes the ball to reach
the far edge of the occlusion. Second, if participants appro-
priately prepare their motor responses and do not under- or
over-estimate the time to execution, we should find that τ ap-
proaches the length of time for which the ball is shown on the
screen prior to occlusion. Or instead, they should approach
τ = 0 if we track the time between when the stimulus enters
the occlusion and when participants enter their responses,
rather than the length of time between the start of the trial
and participants’ responses.

These normative predictions allow us to decompose the
cognitive mechanisms underlying timing ability, and in par-
ticular explain patterns of non-normative behavior. To pre-
view our results, we find that almost all participants system-
atically make late responses relative to the true arrival time of
the stimulus. Furthermore, the degree to which a participant
gravitated toward late responding on these simple perceptual
decisions was predictive of real-world difficulties with tim-
ing, such as patterns of lateness, difficulty with time manage-
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ment, and procrastination.

Methods

To examine patterns of anticipatory timing, we used a per-
ceptual paradigm to expose participants to a moving ball and
asked them to predict when the ball would reach a target lo-
cation (Study 1) or where the ball would be at a given point
in time (Study 2), both represented schematically in Figure
2. Partway along its trajectory, the ball was occluded, mov-
ing behind a gray box so that it was no longer visible. To
challenge participants and explore how they responded to
varying levels of uncertainty, we manipulated three aspects
of the task: the speed at which the ball moved, the length of
time the ball was occluded, and the distance the ball had to
travel. Respectively, this allowed us to test the flexibility of
participants’ internal timers; the degree to which participants
could represent uncertainty in the ball’s position; and how
quickly / reliably participants could assess its velocity for a
given duration of exposure to the stimulus.

Figure 2
Diagram of four conditions of the task.

For simplicity, we denote the speed of the ball in different
conditions as slow (S) or fast (F), the length of the occlusion
as wide (W) or narrow (N), and the length of exposure to the
ball before occlusion as short (S) or long (L). The combina-
tion of these manipulations resulted in 8 unique conditions
(2×2×2). In both experiments, each participant completed
320 trials grouped into 4 blocks of 80 trials, where each block
included 10 trials from each of the 8 conditions. In total,
they saw 40 trials of each unique combination of slow/fast
ball speed, wide/narrow occlusion, and short/long distance.
In Study 2, these 40 trials were further broken down into 4
location probes, described below.

In each study, there were multiple attention checks (such
as “Select option X on the scale below before pressing con-
tinue”) embedded in the directions for the perceptual task

and self-report scales. Participants were removed from fur-
ther analyses if they failed 2 or more of these checks or if
their responses during the experiment fell outside of a rea-
sonable range on more than 10% of trials. For Study 1, re-
sponses entered before the disappearance of the ball behind
the occlusion were deemed unreasonable; while for Study 2,
responses designating coordinates or an area outside of the
occlusion were also deemed as such and removed from anal-
ysis. In both cases, participants were instructed as to what
these ranges were. All subjects received US$10 for partici-
pating in either study, each of which took approximately 40-
45 minutes to complete.

Study 1

Study 1 focused on the response time component of an-
ticipatory timing, whilst connecting performance on the task
to the parameters of an established model of response times
(Anders et al., 2016; Balcı & Simen, 2016) to high-level
problems with time management. The experiment in Study 1
asked participants to enter a response when the leading edge
of the ball stimulus (Figure 2) reached the right edge of the
gray occlusion. Note that Figure 2 shows a quite large ball
for visibility, but the ball used in the actual experiment had
a radius of only 5 pixels to minimize any differences in re-
sponse time between participants who were using the ball’s
leading edge (i.e., following the directions) or who used its
center or trailing edge instead.

Response times were recorded both from the onset of the
stimulus – when participants clicked on the “Start” button to
begin the ball movement at the start of each trial – to the time
they clicked the mouse again to enter their response. We also
calculated the time between when the ball fully disappeared
behind the occlusion and when they entered their responses.
As a result, we were able to evaluate and fit the model solely
to the occluded time, thus gathering information about how
well – or not – people represent positions of moving objects
and anticipate their arrival.

There was a coding error for Study 1 where the
WideShortFast condition presented a WideShortSlow stimu-
lus, resulting in double the number of WhiteShortSlow tri-
als and no WideShortFast trials. In the analyses (Results
section), these were coded correctly (i.e., all WideShortFast
were coded as WideShortSlow instead) so this did not affect
the inferences we made in the effect-coded models.

Participants & Procedure

For Study 1, subject recruitment took place on Prolific
Academic, accepting everyone that passed the screening
for sufficient fluency in English language and normal or
corrected-to-normal vision. After completing informed con-
sent on Qualtrics, the experiment was presented in JavaScript
using jsPsych (De Leeuw, 2015), which produces response
times that are similar in all respects to in-person experiments
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coded with software such as Psychtoolbox, except for an av-
erage ∼25 ms shift / delay in recorded response times (de
Leeuw & Motz, 2016; Reimers & Stewart, 2015; Hilbig,
2016). Participants completed self-report scales on Qualtrics,
randomly counterbalanced with the perceptual task.

A total of 94 participants took part in Study 1, with the
goal of retaining approximately 85 participants after assum-
ing 10% attrition with quality control checks. The target of
85 was identified as the required number to reliably detect
correlations between measures (e.g., model parameters and
self-report scale scores) of at least r = .2, while achieving
Bayes factors for the null hypothesis (r = 0) of BF01 > 3 in at
least 80% of cases where the true relationship was null. This
is effectively the Bayesian equivalent of α = .05 / β = .20
for linear correlations between measures. Of the 94 partic-
ipants, 16 were removed for failing attention checks on at
least 3 occasions or for responding prematurely before the
disappearance of the ball on 10% or more of trials. The re-
maining 78 participants were 30.91 years old on average (SD
= 10.43 years), 64% female / 36% male, and primarily UK /
EU residents (67%), US residents (28%) or South American
residents (3%, one each from Peru, Brazil, and Mexico; the
final participant resided in India).

Self-report measures

In addition to the 320 trials of the anticipatory timing task,
participants completed three self-report scales aimed at un-
derstanding the consequences of anticipatory timing ability.
The first scale – introduced and validated for the first time in
this study – aimed to assess whether and how much people
struggled with timing in their day-to-day lives. It asked par-
ticipants to rate the degree to which they agreed with state-
ments such as “I am frequently late to events I plan to attend”
and “I sometimes under-estimate how long tasks will take”
on a 5-point scale from “Strongly disagree” to “Strongly
agree”. We seek to determine if, and to what degree, prob-
lems with simple perceptual anticipation tasks were repre-
sentative of fundamental difficulties with timing. A complete
list of the items and available answers are provided in Table
S1. From the responses on this measure, we computed a sim-
ple summary score by adding the response to each question,
with specific questions reverse-coded, where each response
was assigned a value of 1-5. A higher value on the summary
score indicated greater problems with timing.

In addition to the new timing scale, we also evaluated tim-
ing problems related to procrastination and time management
using Steel’s procrastination scale (Steel, 2010). As with the
timing scale, we used simple summary scores to describe par-
ticipants’ responses on the procrastination scale. Finally, we
hypothesized that participants’ performance on timing tasks,
and timing problems more generally, might be impacted by
their general tendency to think and plan. We therefore in-
cluded a need for cognition scale (Cacioppo & Petty, 1982).

This last measure was ultimately not related to any interest-
ing model parameters or measures of performance, so we do
not discuss it further.

Study 2

While the predictions of timing models are typically eval-
uated with respect to response times, they also make pre-
dictions for how internal timers themselves should change
with respect to time. The procedure in Study 2 was designed
to evaluate this component of timing models by examining
how uncertainty in the location of a moving object (the ball)
evolves over time as participants track its location. Rather
than looking at anticipated arrival times, we assessed instead
where participants believed the ball was at specific points in
time. Our objective was to shed light on the various com-
ponents of anticipatory timing ability that might be respon-
sible for the patterns of performance in Study 1, such as the
tendency of participants to respond too late relative to the
true arrival time. Prompting responses at specific times al-
lowed us to probe the underlying representations of ball po-
sition and velocity, isolating the dynamics of the timer mech-
anism (Wing & Kristofferson, 1973b) that supports anticipa-
tory timing behavior. As we outlined in the introduction, tim-
ing models make very specific predictions for how responses
on such a task should be distributed (Figure 1, right). If the
TopDDM and TRDM are correct, the value of the timer that
tracks the position of the ball should be normally distributed
at any given point in time (truncated, according to the in-
structions that the ball should be behind the occlusion), and
its variability should increase linearly with time.

Figure 3
Diagram of the structure of the perceptual task in Study 2.
The four probed locations (top) are expected to elicit linearly
increasing variance in the response distributions (bottom) in
each condition.

To test these predictions, Study 2 asked participants to es-
timate the location of the ball at a specifically prompted point
in time. In addition to the eight conditions from Study 1 –



MODELING ANTICIPATORY TIMING 7

with the same manipulations of ball speed, occlusion dura-
tion, and exposure duration – the location of the ball could
be probed at any of four times after the ball had gone behind
the occlusion. The probe was executed by the screen flashing
black, followed by an inquiry as to the position of the cen-
ter of the ball at the exact time the screen flashed. Within
each condition, the flash could occur when the ball was 20%,
40%, 60%, or 80% of the way through the occlusion. This
is illustrated in Figure 3. Following the probe, the x and y
coordinates of the participant’s next click on the screen were
recorded as their response on that trial. After the click, the
experiment would automatically advance to the next trial.

To calibrate the x-coordinate of participants’ clicks, sub-
jects were asked at the beginning of the experiment to click
as precisely as they could on each of the edges of the gray
square. This procedure was repeated twice, to ensure that we
could measure as precisely as possible the location of par-
ticipants’ click relative to the sides of the occlusion. Once
entered, the x-location of each click was coded relative to
these sides, from 0 (precisely at the left edge of the occlu-
sion) to 1 (precisely at the right edge of the occlusion). Any
responses outside this range were excluded from analysis;
additionally, participants who responded outside the range
on 10% or more of trials were excluded from further analysis
altogether.

Normatively, we can derive even stronger predictions for
performance on this type of task than the task in study 1.
A participant who is accurately representing the passage of
time should be able to accurately identify the position of the
ball as it moves behind the occlusion. In the model, this cor-
responds to a situation where the threshold divided by the
drift rate is exactly proportional to the rate at which the ball
is moving (the threshold:drift ratio and occlusion time are
equal up to a constant). If participants are well calibrated to
the position of the ball, then we should also find that esti-
mates of τ – which in the case of Study 2 will describe biases
in the perceived location of the ball itself – are close to 0.

Participants & Procedure

For Study 2, participants were recruited from the Univer-
sity of Florida psychology participant pool. They partici-
pated in the experiment entirely online and received course
credit for completing the study. As with the Prolific sample
in Study 1, participants were permitted to participate as long
as they indicated normal or corrected-to-normal vision and
were fluent English speakers. They completed informed con-
sent and self-report scales on Qualtrics, and the perceptual
task was presented using JavaScript / jsPsych. Upon com-
pleting the study, participants were automatically redirected
to the participant credit management system and granted
credit for their participation.

A total of 30 participants completed the study. Of these,
8 participants failed attention checks or gave responses that

were outside of the reasonable range (not within the gray
box) on 20% or more of the trials. The remaining 22 partic-
ipants were 19.5 years old on average (SD = 1.5 years), in-
cluding 64% (14) female and 36% (8) male participants. Par-
ticipants were all U.S. residents, but identified most closely
as 55% white, 32% Hispanic, 9% Asian, and 8% Black par-
ticipants.

Results

All descriptive and generative model-based statistics /
parameters were estimated using hierarchical Bayesian ap-
proaches, permitting us to look at both individual-level fits
and group-level patterns in the data while allowing the two
to impose mutual constraints (Kruschke, 2014; Lee & Wa-
genmakers, 2014; Shiffrin et al., 2008). For descriptive mod-
els of basic behavioral outcomes (mean RTs, response loca-
tions), we use uninformative priors. For model-based analy-
ses, we restrict the range of certain parameters based on their
domain (e.g., thresholds and diffusion rates must be posi-
tive) but otherwise use weakly informative priors to guide the
sampling process. However, priors on effects-coded model
parameters were centered at zero and identical across all con-
ditions, ensuring any observed parameter effects were driven
by the data. For the exact specification of priors, see the code
provided on the Open Science Framework (osf.io/b28sq).

For each descriptive and generative parameter, we report
the mean of the posterior (M) and the 95% highest-density
interval (95% HDI) that contains the 95% most likely values
of the parameter based on the sampled posterior.

Study 1

For Study 1, response times were recorded as the time
from stimulus onset to response. Naturally, these responses
were comprised of both the time when the ball was be-
hind the occlusion and the entire duration during which the
ball was visible. We can expect response times recorded in
JavaScript to be approximately 25 ms slower than the true
response times (de Leeuw & Motz, 2016), but this does not
account for more than a trivial amount of the lateness of par-
ticipants’ responses. Judgments about subjects’ timeliness
– or lack thereof– were made while registering this partic-
ularity of the online format by subtracting 25 ms from all
response times. Therefore, the online / JavaScript-dependent
time shift no longer impeded measuring response times rela-
tive to normative values.

First, we can compare the overall patterns of response
times to the time when they were supposed to be entered.
These are shown in Figure 4. Overall, 77.96% of responses
were entered after the true arrival time of the ball, indicat-
ing a general tendency towards late responses. This suggests
much more than trivial lateness, with responses trailing the
true arrival time by approximately 661ms out of a typical 1-
5s occlusion time (M(RT ) = 0.66, 95% HDI = [0.64,0.68]).

https://osf.io/b28sq/
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Figure 4
Distribution of response times for each condition (blue histograms), along with the response time distributions predicted by
the model (yellow lines). Dashed black lines indicate the point at which the ball actually crossed the far edge of the occlusion,
i.e., when responses should ideally have been made. As we noted above, all WideShortFast trials presented a WideShortSlow
stimulus, so there are no WideShortFast condition results to show.

Essentially, this was true for each individual condition as
well as the aggregate response times, although longer true ar-
rival times (long distance, slow movement conditions) tended
to decrease the number of late response times. As we show
in the model-based analysis, lateness is also alleviated by a
greater exposure to the ball prior to its occlusion. This re-
sulted in the WideLongSlow condition (bottom row, middle-
right of Figure 4) having the fewest tardy responses.

Model-based analysis

To evaluate the cognitive processes underlying perfor-
mance on the anticipatory timing task, we used the shifted
Wald accumulator model described above (Balcı & Simen,
2016; Anders et al., 2016). This model typically has four
parameters per condition: the drift rate γ, the diffusion rate
σ, the threshold θ, and non-decision time / shift parameter
τ. Ordinarily, the diffusion parameter of this model is fixed
to σ = .1 or 1 to set the scale of the model; however, this
is not required and other parameters may be fixed or vary
across conditions (Donkin et al., 2009). In this study, we are
more interested in how uncertainty – as well as how the val-
ues of drift and diffusion relative to the threshold – change
with time. Therefore, instead of fixing the diffusion rate, we
fixed the threshold to θ = 1. This reflects the observation that
participants knew the location of right side of the occlusion
– which did not vary across conditions – and therefore could
fix the criterion they used to terminate the decision process
by always using the same point of reference.

To evaluate how our manipulations (occlusion length,

travel distance, and ball speed) affected uncertainty on the
task, we used effects coding to linearly predict drift rate, dif-
fusion rate, and non-decision time in each condition, as a
function of each of the three manipulations. The baseline
condition was the narrow occlusion, short distance, and slow
ball movement condition (NarrowShortSlow). Main effects
of making the occlusion wider, making the distance longer,
or making the ball faster were quantified with linear additive
effects. We also estimated interactions between conditions,
but none of these interactions showed any credible effects, so
we present only the main effects of each manipulation. These
main effects, along with the grand mean / NarrowShortSlow
condition, are shown in Table 1.

If the Wald model sufficiently accounts for our manipu-
lations, we should expect the drift rate (tracking the passage
of time while the ball was occluded) and non-decision time
(tracking the length of time the ball was visible) to corre-
spond to the true length of time the ball took to cross the
screen. Thus, they should respond to each of the manipula-
tions according to how they affected the length of time the
stimulus was visible / occluded: drift should be highest with
Short, Narrow, and Fast conditions, while non-decision time
should be highest with Long, Narrow, and Slow conditions
(Wide occlusions decrease the visible time and rate at which
the ball passes through the occlusion as a percentage of its
width). If participants are otherwise unresponsive to our ma-
nipulations and/or performing perfectly, then we should find
no effects of any manipulations on the accumulation of un-
certainty (σ estimates).
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Table 1
Summary of group-level parameter estimates for the effects-
coded Wald accumulator model for Study 1. Each of the pa-
rameters was estimated on a log scale to ensure that their
values would be positive. The parameter values for an indi-
vidual condition can be computed by taking the exponential
of the linear combination of the coefficient for the baseline
condition (NarrowShortSlow, denoted 0) and the relevant co-
efficients for the condition of interest. For example, the diffu-
sion rate for NarrowShortFast would be exp(σ0 +σFast). All
effects are credibly nonzero, so none are displayed in bold as
elsewhere in the text.

Parameter Mean 95% HDI

D
ri

ft
ra

te γ0 -1.01 [-1.09, -0.89]
γWide -0.16 [-0.18, -0.15]
γLong -0.40 [-0.41, -0.38]
γFast 0.32 [0.31, 0.34]

D
iff

us
io

n σ0 -2.12 [-2.26, -1.95]
σWide 0.04 [-0.00, 0.06]
σLong -0.27 [-0.30, -0.24]
σFast 0.28 [0.25, 0.31]

Sh
if

t

τ0 0.43 [0.36, 0.51]
τWide -0.29 [-0.34, -0.27]
τLong 0.09 [0.07, 0.11]
τFast -0.25 [-0.27 -0.24]

As indicated by the parameter estimates, participants ac-
curately perceived that the ball would arrive sooner when
the distance to travel was short (negative effect of γLong) or
when it was moving quickly (positive γFast ). They also accu-
rately believed that the ball would take longer to arrive when
it was occluded for longer (negative γWide), indicating that
drift was specifically indexing representations of uncertainty
in the ball’s location when it was occluded as opposed to
when it was still visible. This suggests that the timer mecha-
nism was used to track the passage of time and the ball’s mo-
tion only when there was uncertainty about the relationship
between the two. The degree to which drift changed under
uncertainty was strongly related to general difficulties with
timing (see self-report results below) and is particularly sig-
nificant to understanding patterns of lateness, so we examine
this effect in greater detail in the Discussion.

As for the diffusion parameter quantifying uncertainty, we
found that reducing the length of time participants were able
to see the ball – either by reducing the travel distance (Short),
or increasing the ball speed (Fast) – increased how uncertain
they became about its position (increased σ). The longer
participants were able to see the ball the better they were
able to assess its velocity, which reduced uncertainty about
its position while it was occluded. While the HDI of the ef-
fect of occlusion length (Wide) was smaller and marginally
crossed zero, it also appeared to increase the value of σ, fur-

ther suggesting that the degree of uncertainty participants ex-
perienced was closely to related to the length of time they had
to assess its motion prior to occlusion.

Finally, the non-decision time corresponded closely to the
length of time the ball was visible. Wider occlusion and
faster ball speed led to a smaller visible time, and thus neg-
ative effects of of τWide and τFast . Conversely, a longer dis-
tance led to a slightly longer visible time: the occlusion took
the same absolute size on the screen in Long/Short condi-
tions, and therefore constituted a smaller fraction of the to-
tal width of the screen in the Long condition. This led to
a slightly positive effect of τLong, corresponding to a greater
visible time in the Long relative to Short condition.

This model provided an excellent overall account of re-
sponse times on the timing task, as shown by the yellow
lines in Figure 4. There were no major discrepancies with
the observed response times (histograms) on the aggregate or
individual levels, suggesting that the Wald model provides a
good account of behavior on both anticipatory and reactive
timing tasks.

One outstanding question related to the non-decision time
and drift rate estimates is how closely they align with the
optimal values. As opposed to whether they simply track the
time when the stimulus was visible, we can examine their
values relative to the true length of time the ball was visi-
ble or occluded. To do so, we subtracted non-decision time
estimates from the length of time the ball was visible, and
multiplied the drift rates by the length of the time the ball
was actually behind the occlusion. Consequently, we were
able to assess whether participants under- or over-estimated
the ball’s movement, as it moved across the screen and be-
hind the occlusion. We index these corrected estimates as γ∗

for drift rates and τ∗ for non-decision time.
When corrected for the true duration for which the ball re-

mained occluded, drift rates in each condition were only half
as high as they should be to accurately track the passage of
time: M(γ∗) = 0.50, 95% HDI = [0.30,0.83]). However, this
varied across conditions, with Wide / Slow conditions having
drift rates substantially closer to 1 (e.g., Wide/Short/Slow
M(γ∗WSS) = 0.84) than Narrow / Fast conditions (e.g., Nar-
row/Long/Fast M(γ∗NLF ) = 0.30).

Interestingly, non-decision time contributes almost noth-
ing to the tardiness of participants’ responses. If participants
were simply taking a long time to execute their motor re-
sponses, we would expect longer non-decision times relative
to the true length of time the stimulus was visible. However,
non-decision times were calibrated almost perfectly to the
true duration of the stimulus: M(τ∗) = -0.01 (95% HDI =
[-0.31, 0.46]). This suggests that participants were tracking
the motion of the ball as it was visible, and preparing their
responses for when they expected it to arrive, with a high
degree of precision and accuracy. As a result, the lateness of
their judgments appears to be driven entirely by faulty repre-
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sentations of (changes in) the stimulus’ position while it was
occluded. We investigate this hypothesis in greater depth in
Study 2.

Self-report measures

Since the parameters of the timing model were estimated
hierarchically, we can evaluate not only the group-level
trends as above, but also the individual-level fits. Specifi-
cally, for each of the parameters in Table 1, we have a pa-
rameter for each person in the study that can be used as an
individual difference in how they represented the passage of
time under uncertainty. These individual differences were
then used to predict high-level timing problems, including
procrastination and our novel timing problems scale. First, it
is worth summarizing performance on each of the scales. For
procrastination (Steel, 2010), participants’ average score was
28.39 (SD = 7.79). Reliability, assessed using Cronbach’s α,
was ρT = 0.89. Scores on our new timing problems scale
were calculated by summing the responses (strongly disagree
= 1 to strongly agree = 5) after reverse coding. Participants
had an average score of 46.80 (SD = 10.09). It also showed
a high degree of reliability, with Cronbach’s α coefficient ρT
= 0.85. Scores on each of the scales were closely related
to one another (r = .72, 95% HDI = [0.52,0.93]), indicat-
ing (perhaps unsurprisingly) that participants who struggled
with procrastination also struggled with timeliness and fore-
thought.

As for model parameters, both procrastination and timing
problem scales were related to drift rates, which index how
well participants were able to track the passage of time under
uncertainty. The correlations between these self-report scales
and drift rates of the Wald model are shown in Table 2. In
general, participants who had generally low base drift rates
(low γ0) had more problems with timing, indicating that low-
level perceptual problems with tracking the passage of time
propagate to substantial problems with timing in common
real-world scenarios. Furthermore, timing problems were ex-
acerbated by an inability to represent the passage of time un-
der uncertainty, indicated by the relationship between γWide
(our primary manipulation of stimulus uncertainty).

Put together, these correlations appear to indicate that
problems with tardiness and forward planning stem from an
inability to accurately track and anticipate the passage of
time, particularly when there are no visual cues to its pas-
sage. Specifically, the degree to which participants became
more uncertain about the passage of time when the ball was
occluded translated to difficulty with accomplishing every-
day tasks where monitoring time is integral to success. We
suggest that this is likely a result of subjective deflation of
the passage of time, where time appears to participants to
pass more slowly than it objectively does. This leads to late
estimates of when the ball should arrive at the far end of the
occlusion, creating the patterns of results we se in Figure 4.

Table 2
Estimated correlation coefficients for the relationship be-
tween drift rate parameters (γ) and scores on the timing
problems and procrastination scales in Study 1. Numbers
in brackets correspond to 95% HDIs on the relationship be-
tween model parameters and scale scores. Those HDIs ex-
cluding zero are shown in bold.

Parameter Timing Procrastination
γ0 -0.29 [-.51, -.07] -0.11 [-.33, .11]

γWide -0.32 [-.54, -.11] -0.35 [-.55, -.11]
γLong -0.20 [-.41, .02] -0.30 [-.54, -.08]
γFast 0.24 [-.01, .44] 0.25 [.04, .47]

Procrastination was similarly related to drift rates and thus
performance on the task, although participants who were
high on procrastination did not necessarily share the general-
ized problems with tracking the passage of time (γ0) that par-
ticipants with timing problems did. Instead, participants who
struggled with procrastination had greater difficulty dealing
with manipulations of the time it took the stimulus to cross
the screen, such as the ball movement speed (γFast ) and the
distance it had to travel (γLong). As a result, procrastination
appeared to be more closely related to temporal distance,
while tardiness and timing problems are more closely related
to tracking the passage of time under uncertainty.

Study 2

An important finding from Study 1 is that participants ap-
peared to track the ball as moving as little as half as fast as
it actually moved through the occlusion (estimates of γ, cor-
rected for the true occluded duration, ranging from around
.4-.8). A possible explanation could be that subjects used the
ball’s motion when it was visible to estimate the length of
time they would have to wait once it was occluded. Adopting
such a strategy would circumvent the need to actually repre-
sent the motion of the ball once it moved behind the occlu-
sion, as participants could simply enter their responses after
a fixed delay determined by the characteristics of the stim-
ulus. The difficulties people encountered on the task could
therefore potentially be attributed to how well they assessed
the duration of the waiting period, as opposed to how well
they actively tracked the passage of time.

To address this possibility, Study 2 asked participants to
actively track the location of the ball by prompting them
to respond with its position at specific points in time. This
allowed us to evaluate how far participants were ahead or
behind its true motion as well as how this representation
changed over time.

The conditions in Study 1 (Narrow/Wide, Short/Long,
Slow/Fast) were further subdivided into four location con-
ditions, which varied in terms of where the ball was when
participants were prompted for its location. This yielded a
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total of 32 unique combinations of condition and ball posi-
tion. On each trial, the position of a participant’s click –
designating where they thought the center of the ball was –
was transformed into a number between 0 and 1, indicating
what proportion of the occlusion they believed the ball had
traversed. Therefore, the variability in responses around the
ball location is normalized by the size of the occlusion. As
a result, the same variance in responses on the scale of the
screen (true variance) will be a greater proportion of the nar-
row occlusion, and thus the baseline variance of responses in
narrow conditions will be higher.

As in Study 1, we used effects coding to estimate the im-
pact of each of the manipulations. Due to multiple measure-
ments within each condition (four different timings of the
prompt), we not only predicted the mean (drift) and variance
(diffusion) of responses in each condition, but also how the
mean and variance changed as the ball moved further into
the occlusion. For instance, it could be the case that a wide
occlusion would result in similar uncertainty about the ball’s
position at early time points compared to a narrow occlu-
sion, but that uncertainty in the ball’s position would grow
more steeply as the ball moved along behind a wide relative
to a narrow occlusion. We therefore predicted the mean and
variance of the ball’s position as a linear function of the point
at which it was prompted (i.e., .2, .4, .6 or .8 of the distance
through the occlusion).

Formally, the ball’s position at time t, P(t), was predicted
as a truncated normal distribution:

P(t)∼ N(µ0 +µ · t,σ2
0 +σ

2 · t)T (0,1). (2)

As mentioned in the introduction (Figure 1, Equation 1),
the position of a Wald accumulator must be normally dis-
tributed. Furthermore, the mean and variance of the normally
distributed state must increase linearly with time; hence the
linear functions of time for t in Equation 2. We allow the
intercept and slope terms to vary with the condition manipu-
lations:

µ0 = m0 +mWide ·W +mLong ·L+mFast ·F
µ = γ0 + γWide ·W + γLong ·L+ γFast ·F

σ
2
0 = exp

(
s0 + sWide ·W + sLong ·L+ sFast ·F

)
σ

2 = exp
(
v0 + vWide ·W + vLong ·L+ vFast ·F

) (3)

The variables W, L, and F are indicators / dummy effect
codes for wide occlusion, long travel distance, and fast ball
movement manipulations, where 0 represents narrow, short,
and slow conditions and 1 represents wide, long, and fast
conditions. In total, this gives us 16 parameters (4 baseline
mean, 4 drift, 4 baseline variance, and 4 diffusion rates) to ac-
count for distributions of responses across all 32 conditions.

As in Study 1, these parameters were estimated using
a hierarchical Bayesian approach with uninformative pri-
ors. The JAGS model code is available on the OSF page

(osf.io/b28sq). Overall, the model did a good job of account-
ing for the distributions of responses in each condition, on
both the individual and group levels. The aggregate fits for
each of the conditions and time points are shown in Figure
5. There were a few individuals who responded near the left
edge of the occlusion on every trial, who show up as “lumps”
on the left side of each of these distributions. Because the
model was fit hierarchically, there was some shrinkage in
its predictions that prevented capturing these outliers. This
is typically desirable (Kruschke, 2014; Kruschke & Liddell,
2018; Boehm et al., 2018), although sometimes it can over-
constrain true yet extreme parameter values (Scheibehenne et
al., 2013). In this case, the model ignoring extreme responses
reflects the likely scenario that these responses are actually
outliers, produced by participants who were not fully en-
gaged in the task. However, since a priori data cleaning pro-
cedures were not established to specifically eliminate them,
we leave such responses in for further analyses.

The group-level estimates and HDIs of the model are
shown in Table 3. In general, participants had a slight bias
to report the ball as having moved further than it actually
had for early prompts, as indicated by the positive intercept
for the ball position m0 > 0. As a result, participants over-
estimated the position of the ball at early time points. This is
shown in Figure 6: when the ball had traversed only the first
20% of the occlusion, participants tended to overestimate its
position.

This overestimation was quickly countered by a low drift
rate γ0. In ideal circumstances, this rate should be approx-
imately 0.20 – the true length of the occlusion that the ball
traversed between each time point that could be prompted.
However, as shown in Table 3, the true drift was typically
much lower at around 0.04 to 0.08. This fairly dramatic ef-
fect could be driven in part by floor and ceiling effects – par-
ticipants could not respond below 0 or above 1, and so low
responses may be biased upward and high responses biased
downward. However, this appears insufficient to explain the
effects. Each model we tested – including a truncated normal
model (reported here) and Markov random walk models with
reflecting or absorbing boundaries1 – found extremely sim-

1In these models, ball location was represented as a random
walk in a 101-state system. Its initial state was assumed to be at
state 1 (left edge of the occlusion) and its motion was represented
using an intensity matrix constructed with drift and diffusion pa-
rameters (see Kvam et al., 2015, 2021). To control for boundary
effects, we tried a version of the model where the far edge was a
reflecting boundary (all responses entering state 101 went to state
100) or where it was an an absorbing boundary (all entries in state
101 stayed there). We fit the model by comparing the proportion of
the evidence in each state against the number of responses there, for
each response time and condition. However, neither model fit better
(when comparing DIC values) than the truncated normal model re-
ported in the main text. Furthermore, each model showed an attenu-
ated drift rate (much lower than 0.20), indicating that the effects are
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Table 3
Summary of group-level parameter estimates (mean, 95% HDIs) for the effects-coded truncated normal distribution model
for Study 2. Parameters represent participants’ mean estimates of the distance the ball had traveled (Location µ) and the log
variance of these estimates (Log(σ2)).

Baseline Change over time

M
ea

n
(µ

) m0 0.25 [0.21, 0.28] γ0 0.06 [0.04, 0.08]
mWide 0.12 [0.09, 0.16] γWide 0.00 [-0.02, 0.02]
mLong -0.00 [-0.03, 0.03] γLong 0.00 [-0.01, 0.02]
mFast -0.04 [-0.06, -0.01] γFast -0.00 [-0.02, 0.01]

L
og

(σ
2 ) s0 -1.88 [-2.02, -1.73] v0 0.07 [0.01, 0.12]

sWide -0.18 [-0.32, -0.04] vWide 0.01 [-0.05, 0.07]
sLong -0.10 [-0.23 0.02] vLong 0.02 [-0.02, 0.07]
sFast -0.05 [-0.20, 0.09] vFast 0.03 [-0.02, 0.08]

Figure 5
Distributions of responses from participants in Study 2 (blue histograms) for each condition (columns) and ball location
(rows). The true location of the ball in each panel is shown as a dashed vertical black line, and the model predictions –
derived from an aggregate of the best fits to each participant – are shown as overlaid yellow lines.

ilar drift rates despite multiple different approaches to cor-
recting or accounting for boundary effects.

In contrast to Study 1, there were few credible effects
of the condition manipulations on either biases in location
responses m or drift rates γ. The only manipulation that
changed the apparent position of the ball within the occlusion
is the Narrow/Wide manipulation, where a wider occlusion
led participants to perceive the ball as having moved slightly
further than it actually had (mWide > 0). By contrast, manip-
ulations of Long/Short and Fast/Slow had small or negligible
effects on the mean of ball location responses. Essentially,
the mean positions of participants’ responses were sensitive
to the position of the ball (γ0 > 0) but less than it ought to be
(γ0 < 1), and this effect was consistent across conditions.

In addition to the mean responses for ball locations, we

also examined how the variance of these responses changed
over time. According to the model, the variance in responses
should grow linearly with time. This prediction was con-
firmed the data (v0 > 0 in Table 3), and is visually clear in
the patterns of variance shown in Figure 7. As with the drift
rates, the increase in variance over time was largely unaf-
fected by condition manipulations, evidenced by the other v
parameters being nearly centered at zero.

The intercept of the variance of responses was nonzero,
and can be computed as the exponential of the s0 estimates:
M(exp(s0)) = 0.15 (95% HDI = [0.14,0.19]). This simply
indicates that not all variance in responses was due to the

unlikely to be attributable to floor or ceiling effects, as the Markov
models would have accounted for these.
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Figure 6
Symbols show mean responses in each of the conditions of Study 2. Error bars indicate the 95% HDIs on the group-level
means, computed from the posterior parameter estimates provided in Table 3.

Figure 7
Symbols show response variance (averaged across participants) in each of the conditions of Study 2. Error bars indicate
the 95% HDIs on the group-level means of the model variance parameters, computed from the posterior parameter estimates
provided in Table 3.

motion of the stimulus, but rather to motor error or to starting
point variability (Ratcliff et al., 2018). As we might expect,
having a wide occlusion decreased this baseline variability
– because the size of the rectangle itself gets larger when
a wide occlusion is used rather than a narrow one, the same
variability on a raw scale (pixels) gets smaller as a proportion
of the total size of the box (divided by width of occlusion).

Discussion

The results of our studies are broadly supportive of the
Wald accumulator model as a cognitive mechanism underly-

ing anticipatory timing. The distributions of response times
in Study 1 closely followed a Wald distribution in each con-
dition, and the distributions of responses in Study 2 followed
a truncated normal distribution. Furthermore, the variance
of the response distributions grew linearly with time (Figure
7), which is a core prediction of the model. As a result, the
effects-coded models were able to account for behavior on
the tasks (Figures 4 and 5) as well as quantify how partici-
pants responded to manipulations of the stimulus and uncer-
tainty in its location.

Notably, both studies uncovered drift rates that were sub-
stantially less than 1 (Tables 1 and 3), indicating that par-
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ticipants fell behind in tracking the movement of the ball
once it was occluded. This resulted in the majority of re-
sponses being significantly late in Study 1, and resulted in
estimations of the ball’s location that fell behind over time in
Study 2. It is perhaps no coincidence that the degree of at-
tenuation in the drift rates relative to the objective motion of
the stimulus aligns with the “filled-duration” illusion, where
time periods with no stimulus in them are perceived to be
shorter than those with a stimulus present (Wearden et al.,
2007). Although the traditional filled-duration illusion oc-
curs with auditory stimuli (Thomas & Brown, 1974), it is
found to be similar (Buffardi, 1971) or even accentuated in
visual and tactile domains (Williams et al., 2019). In each
of these cases, time periods with no new sensory input or
with a smaller number of items in sensory buffers are expe-
rienced subjectively as approximately 60% of the duration
of matched time periods where a more arousing stimulus is
present (Wearden et al., 2007).

Moreover, a filled-duration illusion appears to explain
why participants responded too late in most conditions. If
each person perceives the duration of the “occluded” time as
shorter than the equivalent duration of “visible” time, then
they must wait longer – in objective and absolute time – to
make the occluded time equal to the visible one. For in-
stance, we can imagine a case where the ball is visible for
exactly half of its trajectory and where filled durations are
seen as twice as long as unfilled ones. If the ball is visible
for 2 seconds, then a participant would need to wait 4 sec-
onds when it is occluded to attempt to match the subjective
durations of occluded and visible time periods.

If we attribute this effect to the pacemaker mechanism of
an internal clock (Wing & Kristofferson, 1973b,a), then we
should expect the pacemaker to run at approximately 55-65%
of its rate when the ball is occluded relative to when it is
visible (Wearden et al., 2007). It should therefore come as
no surprise that drift rates were around this range, averaging
γ ≈ .50 in Study 1 and γ ≈ .31 in Study 2.2 The effects in our
studies appeared to be even more extreme than those in the
literature, as they dissociated the “baseline” time that partic-
ipants assumed had passed (intercept for ball position / non-
decision time) from direct estimates of their representations
of the passage of time as the trial unfolded. This suggests that
the filled duration illusion may even be an under-estimate
of the true effect, due to participants assuming a minimum
amount of time has passed (intercept), but actually tracking
the passage of time during unfilled durations as lasting 30-
50% of the unfilled durations.

Despite the explanatory power of a filled-duration illu-
sion, the results cannot be understood without the effects of
uncertainty. Specifically, if the filled-duration illusion alone
were responsible for the results, we would not have expected
faster or more on-time / early responses when the ball was
occluded (Figure 4). In the Wald model, this effect emerges

from greater uncertainty in the ball’s location – variance in
the accumulator specified by σ that grows over time. Just
as increases in drift can lead to faster responses, so can in-
creases in variance / diffusion (Ratcliff & Rouder, 1998).
Ironically, participants’ higher levels of uncertainty in long-
occlusion / slow-movement conditions led to their response
times growing closer to the correct ball arrival time. This is
not a prediction that would be implied by the filled-duration
illusion – which would predict that distorted perceptions of
time would result in more (not fewer) late responses for the
longer occlusion durations – but it is a natural consequence
of the dynamic accumulation models we implemented to ac-
count for behavior on the tasks. The Wald timing model ap-
proach, and specifically accounting for how our manipula-
tions influenced dynamic uncertainty (σ), is therefore critical
to understanding participants’ performance and their repre-
sentations of timing in anticipatory tasks.

Manipulations & timing problems

Another illuminating finding from our studies is the con-
nection between low-level perceptual time inflation – such
as the magnitude of the filled-duration effect in γ – and high-
level problems with planning, lateness, and procrastination.
Individual differences in the ability to perceive the passage
of time – even in the relatively short-duration and simplified
timing task that our participants engaged in – would have
to result from fundamental mechanisms (such as a universal
pacemaker) that pervade many aspects of behavior. Our re-
sults suggest that people who struggle with timing in their
daily lives may in fact be simply unable to accurately track
the passage of time. Specifically, this appears to stem from
difficulty in assessing “unfilled” spans of time where there
are no referents for its passage (like watching a clock) or
novel stimuli. The growth of uncertainty during these un-
filled periods may not be entirely detrimental – as it can re-
sult in more on-time actions – but overall it creates lower
and lower precision in the representation of time as it passes.
People who struggle with time management and tracking
may benefit particularly from visual or auditory cues that al-
low them to accurately track time (Ahrens & Sahani, 2011),
as these sensory inputs provide anchors that pacemaker tim-
ing mechanisms can leverage to produce higher-fidelity rep-
resentations of duration.

Timing difficulty also appears to be exacerbated by ma-
nipulations of uncertainty, with the Narrow/Wide manipula-
tion being particular hard for participants who had timing and
procrastination problems (Table 2). Learning the relationship
between ball speed and the rate at which a timer must be set
is a challenging problem, and individual differences in learn-
ing are sure to propagate from low-level deficits to high-level

2The value of γ0 from Table 3 must be multiplied by 5, as the
estimate is relative to the distance it traverses per time point (.20)
rather than the total distance it traverses over a trial.
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prediction errors in the absence of feedback (Moore et al.,
1998). Differences in task structure leading to differences in
apparent timing ability are certainly not unheard of, and it
may be that these participants benefit more from direct ex-
perience and feedback allowing them to better make antici-
patory timing decisions (Wearden, 2003). Certainly, future
interventions incorporating feedback could evaluate whether
participants who have problems with timing or procrastina-
tion are able to improve over time as they practice anticipa-
tory timing under uncertainty.

One way the task structure appears to have influenced our
results is in differences in the effect of condition manipula-
tions on drift / diffusion parameters (γ / σ in Study 1 and γ /
v in Study 2, respectively). Each manipulation had relatively
large and ubiquitous effects on these dynamic processes in
Study 1, yet entirely absent in Study 2. It could be that the
difference in task – tracking the location of a hidden object
versus predicting its time of arrival – is driving differences
in timing strategies between the two studies. Tracking the
motion of an object (Study 2), as opposed to the duration it
will be occluded (Study 1), may simply be less malleable by
manipulations of speed, uncertainty, or distance. One poten-
tial way to look at this would be to examine eye movements
during the task, and identifying whether participants who
“follow” the motion of the occluded ball (as incentivized in
Study 2) are less susceptible to manipulations of uncertainty,
distance, or ball speed.

Implications & predictions

The most important predictions from the diffusion-based
models of timing – including both the TopDDM (Balcı &
Simen, 2016) and TRDM (Hawkins & Heathcote, 2021) –
were verified in the experimental results. Specifically, re-
sponse times in Study 1 followed a Wald distribution closely
(Figure 4), and both the mean and variance of position esti-
mates increased linearly with time in Study 2 (Figures 6 & 7).
Despite this, there are a few elements of the results that serve
as words of caution and potentially as modifications to both
models. The dramatic reduction of drift rates under uncer-
tainty signify conditions under which the timer mechanism
may not function optimally in either model. As this effect in-
creases with uncertainty manipulations where less is happen-
ing on-screen, it appears to be related to the filled-duration
illusion. The perception of the passage of time, and thus the
timer mechanism in the TopDDM / TRDM, is likely to be
skewed by the presence of a dynamic stimulus. Therefore,
we might expect timer drifts to be lower when a stimulus is
static (such as face / word recognition memory paradigms
Ratcliff, 1978b) relative to expanded judgment paradigms
where the stimulus changes from moment to moment (Smith
& Vickers, 1989; Ratcliff & Smith, 2010).

If we accept that the drift rate of the timer is affected by
static / dynamic stimuli due to the filled duration illusion, it

becomes clear that the type of stimulus will have an effect
on response time distributions under time pressure. Specifi-
cally, decisions should be terminated more quickly when the
stimulus changes over time, because the dynamic features
of the stimulus allow participants to better track the passage
of time. As a result, response times under time pressure
should be more right-skewed for static stimuli then for dy-
namic ones. This could potentially explain why some studies
have found support for collapsing boundary models (Malho-
tra et al., 2018; Hawkins et al., 2012, 2015) while others have
not (Voskuilen et al., 2016). The rate at which a decision is
terminated varies as a function of the stimulus itself, meaning
that the timer will carry greater influence in some paradigms
(specifically, dynamic stimuli) than others.

This prediction is not limited to timer-based models of
early decision termination, either. Regardless of how a de-
cision is terminated, the brain requires some mechanism to
track the passage of time. If all timer mechanisms are sus-
ceptible to temporal distortion induced by the filled-duration
illusion, then there is no reason to believe that timers sub-
serving the collapse of thresholds are immune to these ma-
nipulations. Timers underlying the rate of threshold collapse,
urgency signals, and termination of choice should all be af-
fected. As a result, the optimality of choices based on col-
lapsing threshold or timer mechanisms may be contingent
on the stimulus presented. The optimality of collapsing-
boundary approaches to decision-making may therefore be
compromised by our inability to track the passage of time,
which is determined by the type of stimulus (dynamic ones
that fill an interval, static ones that do not, or some combi-
nation of the two). Such effects may be a particular problem
for internal timing on preferential choice problems (Tajima et
al., 2016; Bhui, 2019; Busemeyer et al., 2019), where nearly
all stimuli are static and there are few cues to the passage of
time.

Conclusion

The ability to keep track of time is critical to triggering
decisions in both decisions under time pressure and antic-
ipatory timing. Understanding how the passage of time is
represented, or in this case misrepresented under particu-
lar conditions, allows us to diagnose the cognitive processes
that are responsible for patterns of difficulty with high-level
planning and timing tasks. As we showed, grappling with
uncertainty in low-level perceptual decisions propagates to
problems with tardiness, planning ahead, and starting and
completing tasks on time. Furthermore, beyond anticipatory
timing, these cognitive mechanisms also carry implications
for decision models that invoke timer mechanisms to control
choice. Put together, the studies we present here suggest that
people have systematic biases in time representation that can
be attributed to subjective inflation of time under uncertainty.
Evident in both anticipatory response times and projections
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about stimulus changes, individual differences in ability to
respond to manipulations of uncertainty are key to under-
standing how people respond to and control the dynamics
of their environment.
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Appendix A: Timing problems scale

The individual questions that were presented on the timing
problems scale are shown in Table S1. Responses were coded
from 1 (strongly disagree) to 5 (strongly agree), with ques-
tions 1, 3, 4, 9, 11, 12, 13, and 14 reverse coded. Question
8 was dropped, as it could be interpreted either as prospec-
tive time management strategy (something I do because I am
good at time management) or as a compensatory strategy (I
plan a few extra minutes because I know I am bad at time
management). Scored responses to the remaining 16 items
were summed to get an overall summary score for the scale
for each participant.
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Table S1
Self-report timing scale used to measure problems with time management and lateness.

Strongly Somewhat Neither agree Somewhat Strongly
disagree disagree nor disagree agree agree

1. I like to plan ahead. ○ ○ ○ ○ ○

2. I often feel rushed. ○ ○ ○ ○ ○

3. I feel well-prepared for tasks I must
accomplish in the future.

○ ○ ○ ○ ○

4. I plan out my day. ○ ○ ○ ○ ○

5. I often find myself needing to play
"catch-up" on work during my free
time.

○ ○ ○ ○ ○

6. I am frequently late to events I plan
to attend.

○ ○ ○ ○ ○

7. It feels like there is not enough time
in the day to accomplish my goals.

○ ○ ○ ○ ○

8. I often plan a few minutes of
"buffer" time into my schedule.

○ ○ ○ ○ ○

9. I often feel over-prepared. ○ ○ ○ ○ ○

10. When traveling, I arrive at my
destination later than I had planned.

○ ○ ○ ○ ○

11. I usually plan out my week. ○ ○ ○ ○ ○

12. It feels like I have more than
enough time to achieve my daily
goals.

○ ○ ○ ○ ○

13. I typically arrive early to events I
plan to attend.

○ ○ ○ ○ ○

14. I usually plan out my month. ○ ○ ○ ○ ○

15. I sometimes under-estimate how
long tasks will take.

○ ○ ○ ○ ○

16. I wish that I were better at plan-
ning for the future.

○ ○ ○ ○ ○

17. I often find myself struggling to
keep pace with the tasks I need to ac-
complish during the day.

○ ○ ○ ○ ○
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